H-Cube[®] Quick Start Reaction Guide

This Quick Start Reaction Guide is designed to give an H-Cube[®] user the best starting conditions for a particular functional group reduction. The conditions described should give 100% conversion to product in one flow through the system. All reactions should be run at a 0.05 M concentration unless otherwise stated. This sheet will help cut down on your reaction optimization time. Please take into account that every molecule is different and in some cases a small amount of optimization may be necessary.

THALESNANO

"Good reactions"

Reaction Type	Substrate	Product	Recommended Catalyst	Recommended Starting Reaction Conditions
Nitro reduction	Ar NO ₂	Ar NH ₂	10% Pd/C and Raney Ni	1.0 mL/min, Full H2 mode, RT to 40°C
Double bond reduction	H H	R ₂ R ₁	10% Pd/C and Raney Ni	1.0 mL/min, Full H2 Mode, RT
	R ₂ R ₃	R ₂ R ₃ R ₁	10% Pd/C and Raney Ni	1.0 mL/min, 60 bar, 60°C
Full triple bond reduction	R ₂ R ₁	R ₂ R ₁	10% Pd/C and Raney Ni	1.0 mL/min, Full H2 Mode, RT
Z-hydrogenolysis	H R O O	R NH ₂	20% Pd(OH) ₂ /C or 10% Pd/C	1.0 mL/min, Full H2 mode, 50°C
O-deprotection	R ^O Ph	R	20% Pd(OH) ₂ /C or 10% Pd/C	1.0 mL/min, Full H2 mode, 60°C
Amine deprotection	R N Ph	R NH ₂	20% Pd(OH) ₂ /C or 10% Pd/C	1.0 mL/min, Full H2 mode, 70°C
	R ₂ N Ph	R ₂ H	20% Pd(OH) ₂ /C or 10% Pd/C and acetic acid	1.0 mL/min, 80 bar, 80°C acetic acid
Nitrile reduction	RN	R NH2	10% Pd/C or Raney Ni	1.0 mL/min, 50 bar, 70°C
Oxime reduction	RNOH	R NH ₂	Raney Ni	1.0 mL/min, 60 bar, 80°C
Aldehyde reduction	R	OH R H	10% Pt/C or Raney Ni	1.0 mL/min, 50 bar, 50°C
Imine reduction	R ₂ R ₃	HN R1 R2 R3	10% Pd/C or Raney Ni	1.0 - 2.0 mL/min, Full H2 Mode, 40°C

۲

Information on this H-Cube® Quick Start Reaction Guide is provided to you "as is" for your personal use and at your own risk. ThalesNano makes no warranties or indemnities, expressed or implied, and assumes no liability in connection with the use of any information from this reaction guide.

۲

۲

۲

Reaction Type	Substrate	Product	Recommended Catalyst	Recommended Starting Reaction Conditions
Selective ring saturation		IZ ZI	10% Pd/C	1.0 mL/min, 20 bar, 25°C
Aromatic ring saturation			20% Pd(OH) ₂ /C	1.0 mL/min, 80 bar, 100°C
			5% Rh/C	1.0 mL/min, 80 bar, 100°C acetic acid
Reductive amination	$R_1 \longrightarrow NH_2$ + $P_2 \longrightarrow R_3$	R_2 R_3 R_3	Raney Ni or 10% Pd/C	1.0 mL/min, Full H2 Mode, 40°C Use dry solvents. Acetic acid can be used to catalyze reactions with ketones (Never use acetic acid with Raney Ni!)
Selective nitro reduction in the presence of a halogen	CI NO2	CINH2	5% Ru/C	1.0 mL/min, 70 bar, 75°C
	Br NO2	Br NH ₂	RuO ₂	2.0 mL/min, 70 bar, 30°C
Selective reduction in the presence of a benzyl protected oxygen or nitrogen	Bn X NO ₂ X = O or NH	Bn X X = O or NH	Raney Ni	1.0 mL/min, Full H2 Mode, 40°C
	Bn X NC X = O or NH	Bn X X = O or NH	Raney Ni	1.0 mL/min, 50 bar, 70°C
	Bn X X = O or NH	Bn X X = O or NH	Raney Ni	1.0 mL/min, Full H2 Mode, RT
	R ₁ O OBn	R ₁ OH OBn	10% Pt/C	1.0 mL/min, Full H2 Mode, 30°C
Selective double bond reduction in the presence of aldehyde or ketone group	R O	R O	1% lr/C	1.0 mL/min, Full H2 Mode, RT
Reductive dethionation	R S H	RH	Raney Ni	1.0 mL/min, Full H2 Mode, 40°C
Deuteration	R ₁	R ₁ D R ₂	10% Pd/C	Use D ₂ O in water reservoir 1.0 mL/min, Full H2 Mode, 30°C Only use dry aprotic solvents Do not use H ₂ saturated catalysts

۲

Information on this H-Cube[®] Quick Start Reaction Guide is provided to you "as is" for your personal use and at your own risk. ThalesNano makes no warranties or indemnities, expressed or implied, and assumes no liability in connection with the use of any information from this reaction guide.

۲

۲

۲